
Peter Senna Tschudin

Performance Overhead and
Comparative Performance
of 4 Virtualization Solutions

Version 1.29

Table of Contents
Project Description ..4

Virtualization Concepts..4

Virtualization...4

Full virtualization versus para-virtualization ...5

Test Environment ..6

Architecture ...6

Operating Systems and auxiliary software ..7

Benchmark Tools ...7

CPU and Memory: LINPACK ...7

Running HPL...7

Disk: Bonnie++ ...8

Running Bonnie++..8

Networking: Netperf ...9

Running Netperf..9

Micro-operations: rdtscbench ...10

Running rdtscbench..10

Important notes about micro-operations and rdtscbench....................11

Hardware benchmark ..12

Overhead and Performance ..12

Numbers ..12

Bash scripts, Windows, and Cygwin ..13

Operating System version, Tuning, and guest tools14

Results...15

Getting the higher score...15

Performance Overhead..16

VMWare ESXi 5 + vSphere 5...17

Microsoft Hyper-V Windows 2008 R2 SP1...18

Page 2 of 37

Citrix XenServer 6...19

Red Hat Enterprise Virtualization 2.2..20

Overhead ranking...21

Comparative Performance ...22

CPU and Memory: LINPACK ...22

Linux ...22

Windows..23

Linux micro-operations: rdtscbench ...24

Disk I/O and Latency: Bonnie++ ..25

Linux ...25

Windows..27

Network I/O: Netperf ..29

Linux..29

Windows..32

Detailed micro-operations results ..35

VMWare ESXi 5 + vSphere 5 ..35

Microsoft Hyper-V Windows 2008 R2 SP1 ..35

Citrix XenServer 6: Linux ...35

Citrix XenServer 6: PV-Linux ...35

Red Hat Enterprise Virtualization 2.2..35

Important Notes ...36

Is it possible to find errors? ..36

Are the results scenario dependent? ...36

Copyright ...36

Registered trademarks ..37

VMWare ESXi EULA and benchmarks result publication...........................37

Page 3 of 37

Project Description
The purpose of this study was to determine the differences in performance
overhead, and to compare the performance delivered to the virtual machine
of the four main virtualization solutions for x86 architecture.

By overhead I mean the computing power and I/O that is spent by the
virtualization layer. By performance I mean the computing power and I/O
available for the virtual machines.

The 4 major players were selected based on the document: “Server
virtualization vendor landscape 2011” from Infotech. The document is
available for download at: http://goo.gl/0Y0ST. I've selected one product, or
solution, for each player based on commercial issues. The four solutions are
commercially competing for data center consolidation.

The product selection:
• VMWare ESXi 5 + vSphere 5
• Microsoft Hyper-V Windows 2008 R2 SP1
• Citrix XenServer 6
• Red Hat Enterprise Virtualization 2.2

Benchmark tests:
• CPU and memory performance
• Network performance for TCP and UDP
• Disk performance and latency
• Micro operations execution time

Guest Operating Systems:
• Microsoft Windows 2008 R2 64 bits
• Red Hat Enterprise Linux 6.1 64 bits

Virtualization Concepts

Virtualization
Virtualization is a framework or methodology of dividing the resources of a
computer into multiple execution environments. Virtualization techniques
create multiple isolated partitions named Virtual Machines (VM) on a single

Page 4 of 37

physical server. There are several kinds of virtualization techniques which
provide similar features but differ in the degree of abstraction and the
methods used for virtualization.

Full virtualization versus para-virtualization
There are several ways to implement virtualization. Two leading approaches
are full virtualization and para-virtualization (PV). Full virtualization is
designed to provide total abstraction of the underlying physical system and
creates a complete virtual system in which the guest operating systems can
execute. No modification is required in the guest OS or application; the guest
OS or application is not aware of the virtualized environment so they have the
capability to execute on the VM just as they would on a physical system. This
approach can be advantageous because it enables complete decoupling of
the software from the hardware. As a result, full virtualization can streamline
the migration of applications and workloads between different physical
systems. Full virtualization also helps provide complete isolation of different
applications, which helps make this approach highly secure.

However, full virtualization may incur a performance penalty. The VM monitor
must provide the VM with an image of an entire system, including virtual
BIOS, virtual memory space, and virtual devices. The VM monitor also must
create and maintain data structures for the virtual components, such as a
shadow memory page table. These data structures must be updated for every
corresponding access by the VMs.

In contrast, para-virtualizationn presents each VM with an abstraction of the
hardware that is similar but not identical to the underlying physical hardware.
Para-virtualization techniques require modifications to the guest operating
systems that are running on the VMs. As a result, the guest operating
systems are aware that they are executing on a VM, allowing for near-native
performance.

While full virtualization does not require modifications on guest operating
system, it may incur performance penalty.

While para-virtualization allows near-native performance, it is mandatory to
modify the guest operating system to allow it to run as para-virtualized guest.

Page 5 of 37

At the time of writing this document, XenServer was the only solution that
provides para-virtualization. Some Linux vendors supports running its
operating systems under para-virtualization. Microsoft Windows does not run
under para-virtualization.

Test Environment

Architecture

Both server and hypervisor are Sun Fire X4150 servers each with 8GB of
RAM, 2X Intel Xeon E5440 CPU, and four gigabit Ethernet ports.

workstation is a Toshiba U205-S5067 notebook with 4GB of RAM and Intel
Core 2 Duo T7200 CPU. This host was used as remote control for the
virtualization solutions, allowing the creation of virtual machines and
hypervisor configuration. The performance of this host does not affect the
virtual machine performance.

The host identified as server was iSCSI target and Netperf server for network
benchmark. All networking connections are gigabit Ethernet. The RAID 10
array composed by 6X 136GB SAS disks was exported over iSCSI to
hypervisor. All virtual machines were stored in the iSCSI volume. Disk tests
made on hardware also used the iSCSI volume.

The host identified as hypervisor was used to test the four different
virtualization solutions. This is the server that hosted the virtual machines and
the server used for hardware benchmark.

Page 6 of 37

The network connections identified as iSCSI and netperf were direct
connections with cross-over cables. The switch on management network is a
low end device. No performance tests were made over management network.

Operating Systems and auxiliary software
server was installed before the beginning of the tests and was not changed
until the tests finished. Operating System and Software: Red Hat Enterprise
Linux 6.1 64 bits with extra packages for Netperf and iSCSI.

workstation Operating System and Software: Red Hat Enterprise Linux 6.1
with Virtualization package group installed. One virtual machine with
Windows 2008 R2 was used as remote control for the virtualization solutions.

hypervisor Operating System and Software: One fresh install for each
solution.

Benchmark Tools

CPU and Memory: LINPACK

LINPACK is a software library for performing numerical linear algebra on
digital computers. It was originally written in Fortran in the 1970s. The
LINPACK Benchmarks are a measure of a system's floating point computing
power. This benchmark is widely used in mathematical computer clusters,
and a similar tool is used as a performance measure for ranking
supercomputers in the TOP500 list of the world's fastest computers.

LINPACK was chosen due its intense use of memory and CPU. It returns a
value in GFlops which is directly affected by CPU and memory performance.
Intel provides binaries for both Windows and Linux named “Intel® Math
Kernel Library – LINPACK”. Those binaries were used in the tests.

Running HPL

For running HPL, it is required to create a configuration file containing the
problem size and some other parameters. The maximum problem size is
related to memory consumption. For smaller memory setups it is required
smaller problem sizes.

Page 7 of 37

Sample Intel(R) LINPACK data file (lininput_xeon32)
Intel(R) LINPACK data
9 # number of tests
15000 14000 13000 12000 11000 10000 8000 6000 1000 # problem sizes
15000 14008 13000 12008 11000 10008 8008 6008 1000 # leading dimensions
1 2 2 2 2 2 2 3 4 # times (trials) to run a test
4 4 4 4 4 4 4 4 4 # alignment values (in KBytes)

Input file for hardware and for single VM

Sample Intel(R) LINPACK data file (lininput_xeon32)
Intel(R) LINPACK data
4 # number of tests
10000 8000 6000 1000 # problem sizes
10008 8008 6008 1000 # leading dimensions
2 2 3 4 # times (trials) to run a test
4 4 4 4 # alignment values (in KBytes)

Input file for 2 simultaneous VMs

Sample Intel(R) LINPACK data file (lininput_xeon32)
Intel(R) LINPACK data
3 # number of tests
7500 4000 1000 # problem sizes
7508 4008 1000 # leading dimensions
3 3 4 # times (trials) to run a test
4 4 4 # alignment values (in KBytes)

Input file for 4 simultaneous VMs

From: http://goo.gl/L1A62

Disk: Bonnie++

Bonnie++ is a benchmark suite for testing disk and filesystem. Several
different parameters are evaluated to allow comparison between different
systems. Bonnie++ minimizes the effects of disk caching which is important
not to generate unrealistic results.

Running Bonnie++

Bonnie++ is flexible and allows high level of configuration. “-n 1” sets to (1 *
1024) the number of files used in files creation tests. “-f” skips per-char IO
tests. “-b” means no write buffering, fsync() after every write.

bonnie++ u 0 n 1 f b d /opt/benchscripts/bonnie

Bonnie command line for all tests

From: http://goo.gl/osId8

Page 8 of 37

Networking: Netperf

“Netperf is a benchmark that can be used to measure the performance of
many different types of networking. It provides tests for both unidirectional
throughput, and end-to-end latency.” The benchmark tests are listed below:

TCP_STREAM

The TCP_STREAM test is the default test in
netperf. It is quite simple, transferring some
quantity of data from the system running
netperf to the system running netserver.
While time spent establishing the
connection is not included in the throughput
calculation, time spent flushing the last of
the data to the remote at the end of the test
is.

TCP_RR

Request/response performance is quoted as
"transactions/s" for a given request and
response size. A transaction is defined as
the exchange of a single request and a
single response.

TCP_CRR

Connect/Request/Response test measures
the performance of establishing a
connection, exchanging a single
request/response transaction, and tearing-
down that connection. This is very much like
what happens in an HTTP 1.0 or HTTP 1.1
connection when HTTP Keepalives are not
used.

UDP_RR
It is very much the same as a TCP_RR test
except UDP is used rather than TCP.

UDP_STREAM
A UDP_STREAM test is similar to a
TCP_STREAM test except UDP is used as
the transport rather than TCP.

Table: Netperf tests description

Running Netperf

To run Netperf it is required to inform the test to be run and the remote host
that is running netserver. It is optional to inform the test length. The script
below was used to run all Netperf benchmark tests.

Page 9 of 37

#!/bin/bash

LEN=80
TESTS="TCP_STREAM TCP_RR TCP_CRR UDP_RR UDP_STREAM"
HOST=server.lmpdc

for test in $TESTS;do
FILENAME=`hostname`$HOSTnetperf$test`date +"%d%m%Y%H%M%S"`.txt
echo $FILENAME
netperf H $HOST l $LEN t $test > $FILENAME
sleep 10

done

Netperf script for all tests

From: http://goo.gl/ylPVe

Micro-operations: rdtscbench

"RDTSC" is a instruction present in some x86 processors. It is short for: Read
Time Stamp Counter. Calling this instruction returns the number of processor
clock cycles since an arbitrary starting point. With care, this instruction can be
used as a precision timer. Just collect the number of clock cycles before and
after the operation to be measured. The number of clock cycles spent is
obtained by subtracting the values.

The purpose of these benchmarks was to measured the execution time of
micro operations such as system calls, inter-process communication using
pipes, memory allocation and simple arithmetic.

rdtscbench was developed by me and the source code is available at:
http://goo.gl/8eXSh and at: https://github.com/petersenna/rdtscbench

It was inspired by the paper “Measuring Basic Linux Operations” found at:
http://goo.gl/jjxae

Running rdtscbench

rdtscbench can be configured to repeat the micro operations benchmark
tests. The first parameter represent the number of repeats for the tests. The
second number determines the number of times that the accuracy test will be
repeated. The third number tells rdtscbench to print on screen not only the
geometrical mean of the values, but all the values used in the computation of
the geometrical mean.

rdtscbench 256 8 1

rdtscbench command line for all tests

Page 10 of 37

Important notes about micro-operations and rdtscbench

The first important note about micro-operations benchmarks is that it was not
possible to find direct relations between micro-operations results and real
world application performance. Based on the results, it is clear that good
results on micro-operations does not “direct” reflect on other benchmarks
results.

Real world applications rarely deal with only a tiny set of tasks like sending
the word “message” though a pipe between two processes. It is more likely
that real world application will be made of very larger set of tasks. Sending a
small file over the Internet using the HTTP protocol is a huge task compared
to a micro-operation.

The hypervisors are optimized for real world applications and do not perform
well on micro-operations. This may not be a problem for your application. The
important message is that, unless your entire application is a micro-operation
that spends less than 1,000 clock cycles to finish (For a 2.6 GHz CPU, 1,000
clock cycles are spent in 385 nanoseconds), real world benchmarks are more
important to you than micro-operation benchmarks.

The hypervisor optimization for non-micro tasks becomes clear on the
simplemath[] test which takes about 2.7 million clock cycles to complete on
hardware. The time to run inside virtual machines were almost the same to
run on hardware for all tested hypervisors. See complete result set on
“Detailed micro-operation results”.

The second important note is about the rdtscbench benchmark software.
RDTSC is not a popular instruction to be used as a precision timer, because it
can report incorrect values if used incorrectly. Can be worst when on multiple
CPU environment. To avoid the problems, rdtscbench measure its accuracy
every time it is called. It counts the number of clock cycles in a period of a
second and compares it to the CPU clock. The average accuracy of
rdtscbench during the benchmark tests was over 99%.

./rdtscbench 256 8

getpid() : 266.879086 clocks. Geom. mean of 256 values.
sysconf() : 994.026190 clocks. Geom. mean of 256 values.
gettimeofday() : 451.414197 clocks. Geom. mean of 256 values.
malloc[1M] : 334.946010 clocks. Geom. mean of 256 values.
malloc[1G] : 8732.190286 clocks. Geom. mean of 256 values.
2pipes[] : 182271.544840 clocks. Geom. mean of 256 values.
simplemath[] : 2741467.741784 clocks. Geom. mean of 256 values.

Page 11 of 37

accuracy : 99.815292% Geom. mean of 8 values.

Output of rdtscbench

If micro-operations performance does not “direct” reflect on real world
application performance, why was it measured? Because it reflects the
virtualization layer overhead for a specific use case.

Hardware benchmark
The hardware performance tests was made on the host identified as
hypervisor. Microsoft Windows and Red Hat Enterprise Linux were installed
directly on the hardware to run the benchmark tests.

Disk benchmark ran on iSCSI volume, not local disks.

Network benchmark connected to the Netperf running on host identified as
server.

Overhead and Performance
It is expected that virtual machines runs slower than hardware. The difference
between maximum hardware performance and maximum virtual machine
performance was called performance overhead.

The benchmarks results that were obtained inside virtual machines were
called performance.

To achieve both overhead and performance all tests were made:
1. On hardware without virtualization layer.
2. On 1 VM with 6GB of RAM and 8 vCPU*.
3. On 2 VMs simultaneously, each with 3GB of RAM and 4 vCPUs.
4. On 4 VMs simultaneously, each with 1,5GB of RAM and 2 vCPUs.

Those tests were repeated for Windows and Linux.

* Microsoft Hyper-V does not support more than 4 vCPUs per virtual machine.

Numbers
Performing thousands of tests in a controlled environment is a complex, time

Page 12 of 37

consuming, expensive, and tedious task. The challenge is to run specific tests
several times changing only desirable and known variables like the
virtualization software, memory size, or number of virtual CPUs. But there
may be external factors, which are hard to control, that affects the results. To
minimize the effects of external factors each set of tests was run five times
with a boot sequence between each set of tests.

For each one of 4 virtualization solutions, 7 tests were run with different
virtual machine configurations. Each test was executed under 2 different
operating systems. Each test was run 5 times. Each Windows test set
consists of 8 tests. Each Linux test set consists of 9 tests. Therefore the total
number of performed tests within virtual machines was:

4 * 7 * 2 * 5 * (8 + 9)/2 = 2380

The hardware was also tested. There are 2 operating systems. Each
operating system was tested 5 times. Each Windows test set consists of 8
tests. Each Linux test set consists of 9 tests. Therefore the total number of
tests performed on hardware was:

2 * 5 * (8 + 9)/2 = 85

XenServer offers paravirtualized virtual machines for running Linux. These
tests were also made. 7 tests with different configurations of virtual machines.
Each test was run 5 times. Each Linux test set consists of 9 tests. Therefore
the total number of tests performed on paravirtualized machine was:

7 * 5 * 9 = 315

The total number of tests:

2380 + 85 + 315 = 2780

Bash scripts, Windows, and Cygwin
The expressive numbers describes part of the challenges of doing large
benchmark tests. Automation is the key point that defines if the benchmark is
viable or not. It would not be possible if tests required graphical interface
intervention like clicking the mouse.

Automation is important due reducing necessary time to complete the

Page 13 of 37

benchmark, but also to remove the operator interference in the results. For
repeating and tedious tasks, humans are not so accurate as scripts are.

Automation is easy with Linux, Bash scripts, ssh, and command line tools.
I've developed scripts that took care of starting individual benchmark tests,
synchronizing concurrent tests, starting services and rebooting virtual
machines and servers.

I wanted to reuse as much script code as I could on Windows, I also wanted
to use same benchmark tools on Linux and Windows. I opted to use Cygwin
to do that.

Cygwin is a collection of tools which provide a Linux look and feel
environment for Windows. It allows to compile POSIX compatible source
code on Windows without modifications. It also provides ssh server and
client.

As the benchmark goals does not include comparing Windows and Linux
performance, the use of Cygwin, which may have performance
considerations, is not a problem. But I warn you that the benchmark results
may not fit to be used to compare Windows and Linux performance.

Cygwin: http://goo.gl/ISv2m

Operating System version, Tuning, and guest tools
It was assumed that the virtualization solutions were delivered tuned for best
performance. Due that no tuning was made at hypervisor level.

The virtual machines were created following the recommended configuration
and the guest tools and/or drivers were installed before starting benchmark
tests.

The Linux virtual machines were tuned with Kernel boot parameter
“elevator=noop”. This was done to improve disk performance. The exact
same tuning was done for all evaluated virtual machines running Linux.

No software updates were executed during the tests. The exact same version
of Microsoft Windows and Red Hat Enterprise Linux were used on all tests.

This mean that the exact same operating system were “installed” on the 4
different evaluated solutions.

Page 14 of 37

The virtual machines were not cloned and/or converted between different
virtualization solutions. For each virtualization solution, one virtual machine
were fresh installed for Linux and other for Windows. The installations were
done following the virtualization solution recommendations.

Results

Getting the higher score
The picture illustrates hpl64 benchmark test being run on hardware, on a
single VM, on two VMs simultaneously and finally on four VMs
simultaneously. All VMs shown on picture are Hyper-V VMs.

The relevant comparison is between hardware score and higher score
measured inside virtual machines. For this case, the higher result were
measured on dual VMs tests. The results in red were the only used.

To calculate the total score for two and four simultaneous VMs, the individual
scores are summed.

Microsoft Hyper-V has a maximum limit of 4 vCPUs for each VM. This is why
single VM benchmark test got low score. This is an example that shows the
need for so many tests. Due the chosen methodology, it was possible to
measure Hyper-V overhead for performance.

Page 15 of 37

Performance Overhead
The numbers shown in the tables above are averages of many performance
values. The values represent difference between maximum hardware
performance and maximum virtual machine performance. There are two
units: % and times slower.

For example, on the first table, “Computing Power – 4,39%” means that
VMWare ESXi has consumed 4.39% of the computing power that was
measured on the hardware. And it also means that 95.61% of the computing
power was delivered to the virtual machines.

On the same table “Micro-operations time – 6.6 times” means that the micro-
operations were, in average, 6.6 times slower to run inside the virtual
machine than on hardware.

Green was used for values that are not greater than 30% or 1.3. Red was
used for values that are greater than 30% or 1.3.

The tables are only a tool for general evaluation and may not reflect the
performance for specific benchmarks. The averages are calculated with the
parameters:

• Computing power: AVERAGE(HPL32, HPL64)

• Disk I/O: AVERAGE(put_block, rewrite, get_block)

• Network I/O: AVERAGE(tcp_crr, tcp_rr, tcp_stream, udp_rr,
udp_stream)

• Micro-operations AVERAGE(getpid(), sysconf(), gettimeofday(),
malloc[1M], malloc[1G], 2pipes[], simplemath[])

Page 16 of 37

VMWare ESXi 5 + vSphere 5

Linux

Computing Power 4.39%

Disk I/O 3.02%

Network I/O 20.52%

Disk Read Latency 3.67 times

Micro-operations time 6.23 times

Windows

Computing Power 3.24%

Disk I/O 2.36%

Network I/O 33.00%

(4.39+3.02+20.52+3.24+2.36+33.00)*(3.67+6.23) = 658.64

Page 17 of 37

Microsoft Hyper-V Windows 2008 R2 SP1

Linux

Computing Power 5.43%

Disk I/O 24.07%

Network I/O 16.50%

Disk Read Latency 2.13 times

Micro-operations time 15.10 times

Windows

Computing Power 3.10%

Disk I/O 20.96%

Network I/O 24.34%

(5.43+24.07+16.50+3.10+20.96+24.34)*(2.13+15.10) = 1626.51

Page 18 of 37

Citrix XenServer 6

Linux*

Computing Power 3.86%

Disk I/O 3.73%

Network I/O 37.06%

Disk Read Latency 1.86

Micro-operations time 13.53

PV-Linux

Computing Power 8.49%

Disk I/O 0.00%

Network I/O 23.96%

Disk Read Latency 2.03

Micro-operations time 4.91

Windows

Computing Power 2.91%

Disk I/O 10.93%

Network I/O 40.07%

PV-Linux: (8.49+0.00+23.96+2.91+10.93+40.07)*(2.03+4.91) = 599.33

Linux: (3.86+3.73+37.06+2.91+10.93+40.07)*(1.86+13.53) = 1516.83

*The “supported” configuration by Citrix is PV-Linux. Linux results were
calculated to allow direct comparison with the other 3 solutions.

Page 19 of 37

Red Hat Enterprise Virtualization 2.2

Linux

Computing Power 43.77%

Disk I/O 3.08%

Network I/O 23.76%

Disk Read Latency 1.98 times

Micro-operations time 8.51 times

Windows

Computing Power 42.97%

Disk I/O 26.54%

Network I/O 43.65%

(43.77+3.08+23.76+42.97+26.54+43.65)*(1.98+8.51) = 1927.74

Page 20 of 37

Overhead ranking

The score is calculated multiplying the sum of the overheads. The formula is
shown in the bottom of previous pages. Lower score is better.

This score is a tool for general use and may not reflect the specific case
performance. For example: Red Hat Enterprise Virtualization is the fastest
solution for writing on disk on Linux and is also the fastest for TCP_STREAM
for both Windows and Linux. Hyper-V is the fastest for 80% of networking
benchmark tests for Windows. This means that even being in the bottom of
the ranking those solutions can deliver higher performance for specific
applications.

By the other hand, virtualization for data center consolidation tends to be a
general platform for all kind of loads. And for the general case analysis this
score is useful.

1 - Citrix XenServer 6 - PV-Linux 599.33

2 - VMWare ESXi 5 + vSphere 5 658.64

3 - Citrix XenServer 6 - Linux 1516.83

4 - Microsoft Hyper-V Windows 2008 R2 SP1 1626.51

5 - Red Hat Enterprise Virtualization 2.2 1927.74

Page 21 of 37

Comparative Performance

CPU and Memory: LINPACK

Linux

Page 22 of 37

0

10

20

30

40

50

60

70

80

Test: HPL32 Best result: XenServer

Linux@vSphere Linux@Hyper-V Linux@XenServer

Linux@RHEV PVLinux@XenServer

G
F

L
O

P
S

0

10

20

30

40

50

60

70

80

Test: HPL64 Best result: XenServer

Linux@vSphere Linux@Hyper-V Linux@XenServer

Linux@RHEV PVLinux@XenServer

G
F

L
O

P
S

Windows

Page 23 of 37

0

10

20

30

40

50

60

70

80

Test: HPL32 Best result: vSphere

Windows@vSphere Windows@Hyper-V Windows@XenServer Windows@RHEV

G
F

L
O

P
S

0

10

20

30

40

50

60

70

80

Test: HPL64 Best result: XenServer

Windows@vSphere Windows@Hyper-V

Windows@XenServer Windows@RHEV

G
F

L
O

P
S

Linux micro-operations: rdtscbench

For this test, lower is better.

Page 24 of 37

0

1

2

3

4

5

6

7

8

9

10

Test: rdtsc Best result: XenServer-PV

Linux@vSphere Linux@Hyper-V Linux@XenServer

Linux@RHEV PVLinux@XenServer

tim
e

s
 s

lo
w

e
r

Disk I/O and Latency: Bonnie++

Linux

Page 25 of 37

0

20000

40000

60000

80000

100000

120000

140000

Test: put_block Best result: RHEV

Linux@vSphere Linux@Hyper-V Linux@XenServer

Linux@RHEV PVLinux@XenServer

K
B

yt
e

s
 /

S

0

10000

20000

30000

40000

50000

60000

Test: rewrite Best result: vSphere

Linux@vSphere Linux@Hyper-V Linux@XenServer

Linux@RHEV PVLinux@XenServer

K
B

yt
e

s
 /

s

For get_block_latency, lower is better.

Page 26 of 37

0

20000

40000

60000

80000

100000

120000

140000

Test: get_block Best result: vSphere

Linux@vSphere Linux@Hyper-V Linux@XenServer

Linux@RHEV PVLinux@XenServer

K
B

yt
e

s
 /

s

0

0,5

1

1,5

2

2,5

3

3,5

4

Test: get_block_latency Best result: XenServer

Linux@vSphere Linux@Hyper-V Linux@XenServer

Linux@RHEV PVLinux@XenServer

tim
e

s
 s

lo
w

e
r

Windows

Page 27 of 37

0

20000

40000

60000

80000

100000

120000

Test: put_block Best result: XenServer

Windows@vSphere Windows@Hyper-V

Windows@XenServer Windows@RHEV

K
B

yt
e

s
 /

s

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Test: rewrite Best result: vSphere

Windows@vSphere Windows@Hyper-V Windows@XenServer Windows@RHEV

K
B

yt
e

s
 /

s

Page 28 of 37

0

10000

20000

30000

40000

50000

60000

70000

80000

Test: get_block Best result: vSphere

Windows@vSphere Windows@Hyper-V Windows@XenServer Windows@RHEV

K
B

yt
e

s
 /

s

Network I/O: Netperf

Linux

Page 29 of 37

0

200

400

600

800

1000

1200

1400

1600

1800

Test: tcp_crr Best result: RHEV

Linux@vSphere Linux@Hyper-V Linux@XenServer

Linux@RHEV PVLinux@XenServer

tr
a

n
s

a
ct

io
n

s
 /

s
e

c

0

1000

2000

3000

4000

5000

6000

7000

Test: tcp_rr Best result: vSphere

Linux@vSphere Linux@Hyper-V Linux@XenServer

Linux@RHEV PVLinux@XenServer

tr
a

n
s

a
ct

io
n

s
 /

s
e

c

Page 30 of 37

0

100

200

300

400

500

600

700

800

900

1000

Test: tcp_stream Best result: RHEV

Linux@vSphere Linux@Hyper-V Linux@XenServer

Linux@RHEV PVLinux@XenServer

M
b

p
s

0

1000

2000

3000

4000

5000

6000

7000

Test: udp_rr Best result: vSphere

Linux@vSphere Linux@Hyper-V Linux@XenServer

Linux@RHEV PVLinux@XenServer

tr
a

n
s

a
ct

io
n

s
 /

s
e

c

Page 31 of 37

0

100

200

300

400

500

600

700

800

900

1000

Test: udp_stream Best result: XenServer-PV

Linux@vSphere Linux@Hyper-V Linux@XenServer

Linux@RHEV PVLinux@XenServer

M
b

p
s

Windows

Page 32 of 37

0

500

1000

1500

2000

2500

Test: tcp_crr Best result: Hyper-V

Windows@vSphere Windows@Hyper-V

Windows@XenServer Windows@RHEV

tr
a

n
s

a
ct

io
n

s
 /

s
e

c

0

1000

2000

3000

4000

5000

6000

7000

Test: tcp_rr Best result: Hyper-V

Windows@vSphere Windows@Hyper-V

Windows@XenServer Windows@RHEV

tr
a

n
s

a
ct

io
n

s
 /

s
e

c

Page 33 of 37

0

100

200

300

400

500

600

700

800

900

1000

Test: tcp_stream Best result: RHEV

Windows@vSphere Windows@Hyper-V

Windows@XenServer Windows@RHEV

M
b

p
s

0

1000

2000

3000

4000

5000

6000

7000

Test: udp_rr Best result: Hyper-V

Windows@vSphere Windows@Hyper-V

Windows@XenServer Windows@RHEV

tr
a

n
s

a
ct

io
n

s
 /

s
e

c

Page 34 of 37

0

200

400

600

800

1000

1200

Test: udp_stream Best result: Hyper-V

Windows@vSphere Windows@Hyper-V

Windows@XenServer Windows@RHEV

M
b

p
s

Detailed micro-operations results
The graph of micro-operations shows only the average of the values below.
Details about rdtscbench can be found on the source code that is available at:

http://goo.gl/8eXSh

VMWare ESXi 5 + vSphere 5

Microsoft Hyper-V Windows 2008 R2 SP1

Citrix XenServer 6: Linux

Citrix XenServer 6: PV-Linux

Red Hat Enterprise Virtualization 2.2

Page 35 of 37

2pipes\[\]
8.3008118291 3.1314255536 5.6620166017 7.1187204422 11.605059495 6.7799893168 1.0126368708 TIMES SLOWER
getpid() sysconf() gettimeofday() malloc\[1M\] malloc\[1G\] simplemath\[\]

2pipes\[\]
8.9814761633 3.7813524486 14.356821002 7.5917511976 4.7303630344 65.277194007 1.012837944 TIMES SLOWER
getpid() sysconf() gettimeofday() malloc\[1M\] malloc\[1G\] simplemath\[\]

2pipes\[\]
15.537770967 5.5411383564 14.895812463 12.744570723 37.858361526 7.1869320174 1.0151371558 TIMES SLOWER
getpid() sysconf() gettimeofday() malloc\[1M\] malloc\[1G\] simplemath\[\]

2pipes\[\]
4.5396331036 3.4004912188 10.851040435 3.7958176971 7.1401489885 3.6712542006 1.0053922725 TIMES SLOWER
getpid() sysconf() gettimeofday() malloc\[1M\] malloc\[1G\] simplemath\[\]

2pipes\[\]
13.636052968 4.9815750167 11.737558909 11.208991433 11.479825204 5.5357852692 1.0195539006 TIMES SLOWER
getpid() sysconf() gettimeofday() malloc\[1M\] malloc\[1G\] simplemath\[\]

Important Notes

Is it possible to find errors?
Even taking great care to achieve error free results, I need to warn you that it
is not impossible that there are incorrect values. I did my best to be sure that
nothing was missed, but this project deals with enormous amount of data.

About 25MB of plain text results files and 3MB of text-only spreadsheets.
Great care was taken, and I think that the probability of finding errors is very
low, but is not zero.

Are the results scenario dependent?
Yes! All results, published on this document, are scenario dependent. The
results may, and probably will, vary with different hardware, and with different
benchmark software.

This does not mean that the results are useless, means that you need to be
careful when using the results. If you are interested in the general case
performance, the overhead ranking may be the appropriate tool while if you
are interested in specific performance measurements, focus on the
performance graphs.

Copyright

Performance Overhead and Comparative Performance of 4 Virtualization Solutions by
Peter Senna Tschudin is licensed under a Creative Commons Attribution-ShareAlike 3.0

Unported License.

Please feel free to contact me about copyright issues and questions. My E-
mail address is peter.senna@gmail.com.

Page 36 of 37

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Registered trademarks
All trademarks and registered trademarks are property of their respective
owners.

VMWare ESXi EULA and benchmarks result publication
VMWare ESXi EULA has a restriction about publishing benchmark results
without prior approval from VMWare. This report received the approval on
January 18, 2012 which can be verified contacting benchmark@vmware.com.

About the author:

Peter Senna Tschudin is free software enthusiast since 1998. Worked in development of
desktop Linux distributions like Linux Educacional 2 for the Educational Ministry of Brazil,
and in development of embedded Linux for thin clients. Created 10 questions and helped
in the preparation process of the certification exam LPIC-304 which deals with
virtualization and high availability. Worked with Linux on IBM mainframes. Enjoys working
with C and Bash. Has a dream of becoming Linux Kernel Developer. On Linuxcon Brazil
talked about the LPIC-304, and about this study. On SkoleLinux UC Norway 2008 talked
about the use of free software in Brazilian public schools.

Page 37 of 37

	Project Description
	Virtualization Concepts
	Virtualization
	Full virtualization versus para-virtualization

	Test Environment
	Architecture
	Operating Systems and auxiliary software
	Benchmark Tools
	CPU and Memory: LINPACK
	Running HPL

	Disk: Bonnie++
	Running Bonnie++

	Networking: Netperf
	Running Netperf

	Micro-operations: rdtscbench
	Running rdtscbench
	Important notes about micro-operations and rdtscbench

	Hardware benchmark
	Overhead and Performance
	Numbers
	Bash scripts, Windows, and Cygwin
	Operating System version, Tuning, and guest tools

	Results
	Getting the higher score
	Performance Overhead
	VMWare ESXi 5 + vSphere 5
	Microsoft Hyper-V Windows 2008 R2 SP1
	Citrix XenServer 6
	Red Hat Enterprise Virtualization 2.2
	Overhead ranking

	Comparative Performance
	CPU and Memory: LINPACK
	Linux
	Windows

	Linux micro-operations: rdtscbench
	Disk I/O and Latency: Bonnie++
	Linux
	Windows

	Network I/O: Netperf
	Linux
	Windows

	Detailed micro-operations results
	VMWare ESXi 5 + vSphere 5
	Microsoft Hyper-V Windows 2008 R2 SP1
	Citrix XenServer 6: Linux
	Citrix XenServer 6: PV-Linux
	Red Hat Enterprise Virtualization 2.2

	Important Notes
	Is it possible to find errors?
	Are the results scenario dependent?
	Copyright
	Registered trademarks
	VMWare ESXi EULA and benchmarks result publication

